The Importance of Wind and Buoyancy Forcing for the Boundary Density Variations and the Geostrophic Component of the AMOC at 268N

نویسندگان

  • IRENE POLO
  • JON ROBSON
  • ROWAN SUTTON
  • MAGDALENA ALONSO BALMASEDA
چکیده

It is widely thought that changes in both the surface buoyancy fluxes and wind stress drive variability in the Atlantic meridional overturning circulation (AMOC), but that they drive variability on different time scales. For example, wind forcing dominates short-term variability through its effects on Ekman currents and coastal upwelling, whereas buoyancy forcing is important for longer time scales (multiannual and decadal). However, the role of the wind forcing on multiannual to decadal time scales is less clear. Here the authors present an analysis of simulationswith theNucleus for EuropeanModelling of theOcean (NEMO)oceanmodel with the aim of explaining the important drivers of the zonal density gradient at 268N, which is directly related to the AMOC. In the experiments, only one of either the wind stress or the buoyancy forcing is allowed to vary in time, whereas the other remains at its seasonally varying climatology. On subannual time scales, variations in the density gradient, and in the AMOC minus Ekman, are driven largely by local wind-forced coastal upwelling at both the western and eastern boundaries. On decadal time scales, buoyancy forcing related to the North Atlantic Oscillation dominates variability in the AMOC. Interestingly, however, it is found that wind forcing also plays a role at longer time scales, primarily impacting the interannual variability through the excitation of Rossby waves in the central Atlantic, which propagate westward to interact with the western boundary, but also by modulating the decadal time-scale response to buoyancy forcing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Importance of Wind and Buoyancy Forcing for the Boundary Density Variations and the Geostrophic Component of the AMOC at 26 8 N IRENE

It is widely thought that changes in both the surface buoyancy fluxes and wind stress drive variability in the Atlantic meridional overturning circulation (AMOC), but that they drive variability on different time scales. For example, wind forcing dominates short-term variability through its effects on Ekman currents and coastal upwelling, whereas buoyancy forcing is important for longer time sc...

متن کامل

Investigation of Geostrophic and Ekman Surface Current Using Satellite Altimetry Observations and Surface Wind in Persian Gulf and Oman Sea

The rise of satellite altimetry is a revolution in the ocean sciences. Due to its global coverage and its high resolution, altimetry classically outperforms in situ water level measurement. Ekman and geostrophic currents are large parts of the ocean’s current, playing a vital role in global climate variations. According to the classic oceanography, Ekman and geostrophic currents can be calculat...

متن کامل

Revealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)

Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...

متن کامل

Two Decades of the Atlantic Meridional Overturning Circulation: Anatomy, Variations, Extremes, Prediction, and Overcoming Its Limitations

The zonally integratedmeridional volume transport in the NorthAtlantic [Atlantic meridional overturning circulation (AMOC)] is described in a 19-yr-long ocean-state estimate, one consistent with a diverse global dataset. Apart from a weak increasing trend at high northern latitudes, the AMOC appears statistically stable over the last 19 yr with fluctuations indistinguishable from those of a sta...

متن کامل

Estimation of salinity, heat and buoyancy budgets of the inflow coastal current into the Persian Gulf from the Strait of Hormuz

An analytical model for a coastal boundary current was used to investigate heat and salt budget of exchange flows in the Persian Gulf as a marginal sea. Coastal boundary currents exchange heat and freshwater with the mosphere and the offshore waters. As heat and salinity fluxes caused by air-sea interaction and eddy activities, different temperature and salinity associated with boundary current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014